

Beratung, Forschung und Material prüfung in den Fachbereichen:

Baustoffe
 Geo- und Umwelttechnik

IfM Institut für Materialprüfung Dr. Schellenberg Leipheim GmbH & Co. KG 89340 Leipheim, Maximilianstr. 15

Staatliches Bauamt Ingolstadt Straßenbau Paradeplatz 2 85049 Ingolstadt

Anerkannt nach RAP Stra 15 für

- Baustoffeingangsprüfungen
- Eignungsprüfungen
- Fremdüberwachungsprüfungen
- Kontrollprüfungen
- Schiedsuntersuchungen in den Bereichen A, BB, BE, D, F, G, H, I

Sach- und Fachkunde für Probe-nahme nach LAGA PN 98

Bericht-Nr.: 23S70900 Projekt Nr.: 23 / 70900 - 200 Datum: 27.11.2023

B 300, Erneuerung Fahrbahn südlich Reichertshofen Kontrollprüfung an Proben aus dem Asphaltoberbau

Angaben über die Proben:

laut Auftragsschreiben - Entnahmeprotokoll vom 13., 14., 15., 18., 19., 20., 21., 25., 27.09., 06., 13.10.2023

siehe Seite 2 Bezeichnung

Mischgut und Bohrkerne aus der Binder- und Deckschicht Art der Probe

siehe Seite 2 Einbaustrecke

siehe Seite 2 Entnahmetag/Ort

jeweils ca. 18 kg / Ø 15 cm Gewicht/Größe

05., 17.10.2023 Eingang im Labor

Ausführendes Unternehmen Fa. Strabag, Ernsgaden Fa. IAM, Großmehring Lieferwerk des Mischgutes

Bemerkungen Der Mischgutzusammensetzung liegen die Eignungsnachweise des Auftragnehmers vom 21.07.2023 und 18.09.2023 zugrunde.

Dieser Bericht umfasst 34 Seiten und 0 Anlagen. Eine Veröffentlichung, auch auszugsweise, ist ohne unsere Zustimmung nicht zulässig. Die untersuchten Proben werden ohne besondere Absprache nicht aufbewahrt. Dem Untersuchungsauftrag liegen unsere Geschäftsbedingungen und unsere jeweils gültige LHO zugrun-

Unsere Datenschutzhinweise finden Sie unter https://www.ifm-dr-schellenberg.de/index-rechtliches-datenschutz.

Persönlich haftende Gesellschafterin: IfM Institut für Materialprüfung Dr. Schellenberg Leipheim Verwaltungsges. mbH, Leipheim Amtsgericht Memmingen, HRB 11905

Telefon 08221 20733-0

Geschäftsführer: Dr.-Ing. Peter Schellenberg Dipl.-Ing. (FH) André Schimetschek

Erfüllungsort und Gerichtsstand ist Günzburg Amtsgericht Memmingen, HRA 10898

Sparkasse Günzburg-Krumbach IBAN DE95 7205 1840 0000 1034 81 BIC BYLA DE M1 GZK
USt-IdNr. DE 226 876 050; St-Nr.121/164/02201

Telefax 08221 20733-109 E-Mail Leipheim@ifm-dr-schellenberg.de

Seite 2/34

Angelieferte Proben:

Nach der mitgelieferten Entnahmeniederschrift waren die Proben wie folgt gekennzeichnet:

	Probenbezeichnung			Entnahmetag	Entnahmestelle
	Mischgut		Bohrkerne	Mischgut	
AC 16 B S	SMA 8 S	AC 11 D S			
1	1 D	-	1 a-d	13., 25.09.2023	0+250 rechts
2	2 D	-	2 a-d	13., 25.09.2023	0+750 mitte
3	3 D	-	3 a-d	19., 25.09.2023	1+250 links
4	4 D	-	4 a-d	20., 25.09.2023	1+750 mitte
5	5 D	-	5 a-d	20., 25.09.2023	2+250 rechts
6	6 D	-	6 a-d	14., 21.09.2023	2+750 mitte
7	7 D		7 a-d	14., 21.09.2023	3+250 links
8	8 D	-	8 a-d	15., 21.09.2023	3+700 mitte
9	9 D	-	9 a-d	15., 21.09.2023	4+150 rechts
10	10 D	-	10 a-d	15., 21.09.2023	4+550 links
11	-	11 D	11 a, b	18.09., 06.10.2023	0+065 Ast Langenbruck
12	-	12 D	12 a, b	18.09., 06.10.2023	0+100 Ast Winden

Zu den Bohrkernen liegen uns keine Entnahmedaten vor.

Seite 3/34

Asphaltbinder AC 16 B S - Probe-Nr. 1

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

Bindemittelgehalt:			Korngröß	Senverteilung	Anteil	Durchgang
lösliche Menge	M%	5,23 / 5,39	Kornkla	asse in mm	M%	M%
Zuschlag Unlösliches	M%	0,20	0,000	- 0,063	6,8	6,8
Gesamtmenge (arithm. Mittel)	M%	5,5	0,063	- 0,125	1,9	8,7
			0,125	- 0,25	3,0	11,7
Wassergehalt	M%	<0,1	0,25	- 1	9,6	21,3
			1	- 2	7,6	28,9
Bindemitteleigenschaften:			2	- 5	22,4	51,3
EP RuK	°C	66,0	5	- 8	18,4	69,7
elast. Rückstellung Ausziehlär	ige % cm	55 19,8	8	- 11	9,0	78,7
			11	- 16	18,6	97,3
			16	- 22	2,7	100,0
Rohdichte	g/cm³	2,503	22	- 32		
			32	- 45		
Marshall-Probekörper (145 °C)):					
Raumdichte	g/cm³	2,443	Faseranteil		M%	-
Hohlraumgehalt	Vol%	2,4	Füller < 0,063	mm	M%	6,8
Stabilität	kN	-	Anteil < 0,125	mm	M%	8,7
Fließwert	mm	-	FGK 0,063/2 n	nm	M%	22,1
			GGK > 2 mm		M%	71,1
			Anteil > 5,6 m	m	M%	-
abgelaufene Bindemittelmeng	e M%	-	Grobkornante	eil	M%	21,3
	•			100	_	
100				100	0	
				7/90		
№ 80				80 // 00	— 20 ≈	
W				$+$ \times i $+$ $+$	\ 	
.i. 60				// 65	40 [.] 등	
gan					anc	
о̂н 40				·1	— 60 Kst	
Siebdurchgang in M%			30		20 %-:	
ie b			-\(\frac{1}{25}\)		J	
20	10				— 80 <u>∞</u>	
7,		==-				
0,30		- L	. 2	0 8 4 9 4 v	100	
	0,063	0,25		5,6 8 11,2 16 22,4 31.5	5. 24	
•	0	Siel	oweite in mm			
		Asphaltb	inder AC 16	6 B S		
		•				
<u> </u>						

Seite 4/34

Asphaltbinder AC 16 B S - Probe-Nr. 2

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

		Korngrößen	verteilung	Anteil	Durchgang
M%	5,11	Kornklass	se in mm	M%	M%
M%	0,20	0,000	- 0,063	7,0	7,0
M%	5,3	0,063	- 0,125	1,9	8,9
		0,125	- 0,25	2,9	11,8
M%	<0,1	0,25	- 1	9,3	21,1
		1	- 2	7,4	28,5
		2	- 5	19,8	48,3
°C	65,8	5	- 8	18,4	66,7
nge % cm	59 -	8	- 11	8,6	75,3
		11	- 16	17,6	92,9
		16	- 22	7,1	100,0
g/cm³	2,496	22	- 32		
		32	- 45		
):					
g/cm³	2,435	Faseranteil		M%	-
Vol%	2,4	Füller < 0,063 m	m	M%	7,0
kN	-	Anteil < 0,125 m	m	M%	8,9
mm	-	FGK 0,063/2 mm	1	M%	21,5
		GGK > 2 mm		M%	71,5
		Anteil > 5,6 mm		M%	-
je M%	-	Grobkornanteil		M%	24,7
			100		·
			100	 	
			90 1/1/90	_	
			80 1//	— 20 ♀	
			i	_ ≥	
		/	65	⊣ 40 등	
		/_/		tan	
				60 🔆	
		30		orüc	
		-_25		oje k	
10.				00 0′	
	-				
T	۲۵ ۲	- 7 9	8 2 9 4 5	100 	
),06),12	0,5	5	3,2,4	4	
5 5					
	Asphaltb	inder AC 16 E	3 S		
	M% M% M% M% "C nge % cm g/cm³ Vol% kN mm	M% 0,20 M% 5,3 M% <0,1 °C 65,8 59 - g/cm³ 2,496): g/cm³ 2,435 Vol% 2,4 kN - mm - ge M% -	M% 0,20 0,000 0,000 0,063 0,125 0,25 1 1 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2	M%	M% 0,20 M% 5,3 M% 5,2 M% 5,3 M% 5,3 M% 5,2 M% 5,3 M% 5,3 M% 5,3 M% 5,3 M% 5,3 M% 5,2 M% 5,3 M% 5,3 M% 5,2 M% 5,3 M% 6,3 M.

Seite 5/34

Asphaltbinder AC 16 B S - Probe-Nr. 3

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

Bindemittelgehalt:			_	enverteilung	Anteil	Durchgang
lösliche Menge	M%	4,85	Kornklas	se in mm	M%	M%
Zuschlag Unlösliches	M%	0,19	0,000	- 0,063	6,3	6,3
Gesamtmenge	M%	5,0	0,063	- 0,125	2,0	8,3
			0,125	- 0,25	3,0	11,3
Wassergehalt	M%	<0,1	0,25	- 1	9,1	20,4
			1	- 2	7,4	27,8
Bindemitteleigenschaften:			2	- 5	20,2	48,0
EP RuK	°C	66,4	5	- 8	14,7	62,7
elast. Rückstellung Ausziehlän	ge % cm	66 -	8	- 11	10,5	73,2
			11	- 16	23,4	96,6
			16	- 22	3,4	100,0
Rohdichte	g/cm³	2,508	22	- 32		
			32	- 45		
Marshall-Probekörper (145 °C)	:					
Raumdichte	g/cm³	2,421	Faseranteil		M%	-
Hohlraumgehalt	Vol%	3,5	Füller < 0,063 n	nm	M%	6,3
Stabilität	kN	_	Anteil < 0,125 n	nm	M%	8,3
Fließwert	mm	-	FGK 0,063/2 mi	m	M%	21,5
			GGK > 2 mm		M%	72,2
			Anteil > 5,6 mm	1	M%	-
abgelaufene Bindemittelmenge	M%	-	Grobkornanteil		M%	26,8
	•		•	100		
100				100	0	
				90	_	
% 80				80 /// 00	─ 20 😽	
M.				+//i	×	
.i. 60				65	⊣ 40 등	
gan						
û 10 kg					$-$ 60 $\frac{5}{8}$	
dur d			30		l 🔐	
80 80 80 80 80 80 80 80 80 80 80 80 80 8			25		20 % 80 Siebrückstand in M%	
∵ 20	10				─ 80 🖄	
7	<u> </u>				1	
03(<u>—— \f</u> > s	- C - C	- 7 9	8 2 8 4 C	<u>니</u> 100	
	0,125	0,25	10	2,0 11,2 16 22,4 31,5	45	
	0	Sie	bweite in mm			
		Asphaltb	inder AC 16	BS		
		•				

Seite 6/34

Asphaltbinder AC 16 B S - Probe-Nr. 4

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

Bindemittelgehalt:			Korngrößenverteilun	g Anteil	Durchgang
lösliche Menge	M%	4,84	Kornklasse in mm	M%	M%
Zuschlag Unlösliches	M%	0,19	0,000 - 0	,063 6,5	6,5
Gesamtmenge	M%	5,0	0,063 - 0	,125 1,9	8,4
			0,125 - 0	,25 3,3	11,7
Wassergehalt	M%	<0,1	0,25 - 1	11,2	22,9
			1 - 2	7,9	30,8
Bindemitteleigenschafter	1:		2 - 5	19,5	50,3
EP RuK	°C	67,4	5 - 8	14,3	64,6
elast. Rückstellung Auszi	ehlänge % cm	50 18,8	8 - 11	12,7	77,3
			11 - 16	21,3	98,6
			16 - 22	1,4	100,0
Rohdichte	g/cm³	2,534	22 - 32		
		·	32 - 45		
Marshall-Probekörper (14	I5 °C):				
Raumdichte	g/cm³	2,421	Faseranteil	M%	-
Hohlraumgehalt	Vol%	4,5	Füller < 0,063 mm	M%	6,5
Stabilität	kN	_	Anteil < 0,125 mm	M%	8,4
Fließwert	mm	-	FGK 0,063/2 mm	M%	24,3
			GGK > 2 mm	M%	69,2
			Anteil > 5,6 mm	M%	-
abgelaufene Bindemittelr	nenge M%	-	Grobkornanteil	M%	22,7
		1	100		
	100			0	
				90	
%-	80		80 1/	20 %	
Σ				Σ Σ	
g i.	60		65	40 등	
yan				anc	
ĵų.	40			60 Sk	
dur	70		30	orüc	
Siebdurchgang in M%	00			20 %-:	
S	20			80 💮	
	7				
	0 1	- Λ - Λ	- 7 987	100	
	0,063	0,25	7, 1,	16 22,4 31,5 45	
	0 0	Sie	bweite in mm		
		Asphaltb	inder AC 16 B S		
		•			

Seite 7/34

Asphaltbinder AC 16 B S - Probe-Nr. 5

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

Bindemittelgehalt:			_	enverteilung	Anteil	Durchgang
lösliche Menge	M%	4,85	Kornklas	sse in mm	M%	M%
Zuschlag Unlösliches	M%	0,20	0,000	- 0,063	7,1	7,1
Gesamtmenge	M%	5,1	0,063	- 0,125	1,7	8,8
			0,125	- 0,25	3,2	12,0
Wassergehalt	M%	<0,1	0,25	- 1	9,9	21,9
			1	- 2	7,3	29,2
Bindemitteleigenschaften:			2	- 5	19,9	49,1
EP RuK	°C	67,2	5	- 8	16,6	65,7
elast. Rückstellung Ausziehläng	ge % cm	61 -	8	- 11	13,1	78,8
		·	11	- 16	19,4	98,2
			16	- 22	1,8	100,0
Rohdichte	g/cm³	2,533	22	- 32		
		·	32	- 45		
Marshall-Probekörper (145 °C):						
Raumdichte	g/cm³	2,432	Faseranteil	1	M%	-
Hohlraumgehalt	Vol%	4,0	Füller < 0,063 r	nm	M%	7,1
Stabilität	kN	-	Anteil < 0,125 r	nm	M%	8,8
Fließwert	mm	-	FGK 0,063/2 m	m	M%	22,1
			GGK > 2 mm		M%	70,8
			Anteil > 5,6 mm	า	M%	-
abgelaufene Bindemittelmenge	M%	-	Grobkornantei	I	M%	21,2
	•		•	100 _	_	
100 Г				100	0	
-				90	_	
% 80 ∤				80 / / 00	─ 20 ×	
Ä				$-\sqrt{ i }$	Š	
. <u></u> 60 -				// 65	⊣ 40 등	
gan					au	
) 101 40					— 60 Sk	
%:- 80 - 60 - 40 - 20 - 20 - 20 - 20 - 20 - 20 - 2			30		20 40 60 80 Siebrückstand in M%	
je p			-\25		oje K	
∞ 20 -	10	_======================================			─ 80 🖄	
7.E		=			-	
0 ₃ 5		7 - 7	- 7 %	8 2 9 4 5	ᆜ	
90	0,125	0,25	Ľ.	2,7 11,2 16 22,4 31,5	45	
	. 0		bweite in mm			
		Asphaltb	inder AC 16	BS		

Seite 8/34

Asphaltbinder AC 16 B S - Probe-Nr. 6

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

Bindemittelgehalt:			Korngrößenverte	ilung	Anteil	Durchgang
lösliche Menge	M%	4,88	Kornklasse in m	nm	M%	M%
Zuschlag Unlösliches	M%	0,19	0,000 -	0,063	6,4	6,4
Gesamtmenge	M%	5,1	0,063 -	0,125	1,3	7,7
			0,125 -	0,25	2,6	10,3
Wassergehalt	M%	<0,1	0,25 -	1	10,1	20,4
			1 -	2	7,4	27,8
Bindemitteleigenschaften	:		2 -	5	17,4	45,2
EP RuK	°C	66,4	5 -	8	12,3	57,5
elast. Rückstellung Auszie	ehlänge % cm	62 -	8 -	11	11,7	69,2
		-	11 -	16	26,0	95,2
			16 -	22	4,8	100,0
Rohdichte	g/cm³	2,523	22 -	32		
			32 -	45		
Marshall-Probekörper (14	5 °C):					
Raumdichte	g/cm³	2,432	Faseranteil	•	M%	-
Hohlraumgehalt	Vol%	3,6	Füller < 0,063 mm		M%	6,4
Stabilität	kN	-	Anteil < 0,125 mm		M%	7,7
Fließwert	mm	-	FGK 0,063/2 mm		M%	21,4
			GGK > 2 mm		M%	72,2
			Anteil > 5,6 mm		M%	-
abgelaufene Bindemitteln	nenge M%	-	Grobkornanteil		M%	30,8
			•	100		
<i>'</i>	100			100	7 ⁰	
				// / ⁹⁰	-	
%-	80		80	\ '//	 20 🔗	
Siebdurchgang in M%				<u>// </u>	80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
g ir	60			65	│ 40 등	
gan					auc	
ĵγɔ.	40				- 60 Skg	
dur	40		30		orüc	
ieb			25			
S	20				─ 80 <u>.</u> 2	
	7				7	
	0,5 7	2 2	- 7 9 8 6	7 (0 24 10	ᆜ 100 K	
	0,063	0,25	7 بن	11,4 16 22,4 31,5	45	
	0 0	Sie	bweite in mm			
		Asphaltb	inder AC 16 B S			
		-				

Seite 9/34

Asphaltbinder AC 16 B S - Probe-Nr. 7

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

Bindemittelgehalt:			Korngrößenverteilu	ing Anteil	Durchgang
lösliche Menge	M%	4,68	Kornklasse in mm	M%	M%
Zuschlag Unlösliches	M%	0,18	0,000 -	0,063 6,0	6,0
Gesamtmenge	M%	4,9	0,063 -	0,125 1,5	7,5
			0,125 -	0,25 3,0	10,5
Wassergehalt	M%	<0,1	0,25 -	1 9,7	20,2
			1 -	2 7,9	28,1
Bindemitteleigenschaften:			2 -	5 16,9	45,0
EP RuK	°C	65,6	5 -	8 9,5	54,5
elast. Rückstellung Auszieh	nlänge % cm	68 -	8 - 1	1 15,9	70,4
			11 - 1	6 25,8	96,2
			16 - 2	2 3,8	100,0
Rohdichte	g/cm³	2,521	22 - 3	2	
		,	32 - 4	5	
Marshall-Probekörper (145	°C):				
Raumdichte	g/cm³	2,429	Faseranteil	M%	-
Hohlraumgehalt	Vol%	3,8	Füller < 0,063 mm	M%	6,0
Stabilität	kN	-	Anteil < 0,125 mm	M%	7,5
Fließwert	mm	-	FGK 0,063/2 mm	M%	22,1
			GGK > 2 mm	M%	71,9
			Anteil > 5,6 mm	M%	-
abgelaufene Bindemittelme	enge M%	-	Grobkornanteil	M%	29,6
		•	10	n -	•
10)0			0	
				90	
% 8	30		80 1/	20 %	
Siebdurchgang in M%			///	60 80 80 80 80 80 80 80 80 80 80 80 80 80	
g in	60		/ / 65	40 ≒ 5	
Jan				anc	
chg	10			eckst 09	
dur,	10		30	rüo on	
ieb			25	ie b	
<i>σ</i> 2	20		25	80 \(\overline{\cdots}\)	
	7 10				
	0 ³ Q— γ ₅	10	- 7 982	100	
	0,063	0,25	7,	16 22,4 31,5 45	
	o o	Sie	bweite in mm	44 47	
		Asphalth	oinder AC 16 B S		
		- 1	-		

Seite 10/34

Asphaltbinder AC 16 B S - Probe-Nr. 8

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch):

GGK aus Kies gebrochen und Granit (teilweise Bahnschotter), FGK gebrochen, Füller, Faserstoff-

reste

			reste			
Bindemittelgehalt:			_	enverteilung	Anteil	Durchgang
lösliche Menge	M%	4,52	-	sse in mm	M%	M%
Zuschlag Unlösliches	M%	0,19	0,000	- 0,063	6,2	6,2
Gesamtmenge	M%	4,7	0,063	- 0,125	1,4	7,6
			0,125	- 0,25	2,9	10,5
Wassergehalt	M%	<0,1	0,25	- 1	9,2	19,7
			1	- 2	6,9	26,6
Bindemitteleigenschaften:			2	- 5	16,3	42,9
EP RuK	°C	68,8	5	- 8	14,8	57,7
elast. Rückstellung Ausziehlänge	e % cm	57 18,9	8	- 11	12,2	69,9
			11	- 16	21,8	91,7
			16	- 22	8,3	100,0
Rohdichte	g/cm³	2,523	22	- 32		
			32	- 45		
Marshall-Probekörper (145 °C):						
Raumdichte	g/cm³	2,399	Faseranteil		M%	-
Hohlraumgehalt	Vol%	4,9	Füller < 0,063 ı	mm	M%	6,2
Stabilität	kN	-	Anteil < 0,125 i	mm	M%	7,6
Fließwert	mm	-	FGK 0,063/2 m	m	M%	20,4
			GGK > 2 mm		M%	73,4
			Anteil > 5,6 mm	n	M%	-
abgelaufene Bindemittelmenge	M%	-	Grobkornantei	I	M%	30,1
100 —				100	 0	
100				100	\neg "	
				80 // 90	٦.,	
% 80 ⊢					— 20 ×	
≥ -					_ ≥	
.i. 60 ⊢				65	─ 40 등	
nga —						
%:-W ui Bourchgang in M:-%					00 00 00 00 00 00 00 00 00 00 00 00	
pqr			30		prug	
			25		80 ss	
	10					
1 30-	= - 				₁₀₀	
35 1 = 1	. 52	25	- 2 -	2,1 1,2 1,5 1,5 1,5		
0,063	0,125	0,25		22,4 31,5	4	
	_		ebweite in mm	- •		
		Asphalth	oinder AC 16	R2		

Seite 11/34

Asphaltbinder AC 16 B S - Probe-Nr. 9

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

Bindemittelgehalt:			_	enverteilung	Anteil	Durchgang
lösliche Menge	M%	4,99	Kornklas	sse in mm	M%	M%
Zuschlag Unlösliches	M%	0,20	0,000	- 0,063	6,9	6,9
Gesamtmenge	M%	5,2	0,063	- 0,125	1,6	8,5
			0,125	- 0,25	3,2	11,7
Wassergehalt	M%	<0,1	0,25	- 1	9,7	21,4
			1	- 2	8,0	29,4
Bindemitteleigenschaften:			2	- 5	20,9	50,3
EP RuK	°C	68,0	5	- 8	15,0	65,3
elast. Rückstellung Ausziehläng	je %∣cm	58 19,3	8	- 11	12,2	77,5
		•	11	- 16	20,8	98,3
			16	- 22	1,7	100,0
Rohdichte	g/cm³	2,522	22	- 32		
		,	32	- 45		
Marshall-Probekörper (145 °C):						
Raumdichte	g/cm³	2,438	Faseranteil		M%	-
Hohlraumgehalt	Vol%	3,3	Füller < 0,063 ı	mm	M%	6,9
Stabilität	kN	-	Anteil < 0,125 i	mm	M%	8,5
Fließwert	mm	-	FGK 0,063/2 m	m	M%	22,5
			GGK > 2 mm		M%	70,6
			Anteil > 5,6 mm	n	M%	-
abgelaufene Bindemittelmenge	M%	-	Grobkornantei	I	M%	22,5
		1	•	100 _		·
¹⁰⁰ Г				100	0	
-				90	_	
% 80 -				80 // 00	— 20 ♀	
Ä				$ \mathcal{M}_i $	×	
. <u>=</u> 60				65	⊣ 40 등	
gan						
ິ້ງຊຸວ ຊຸວ 40					$-$ 60 $\frac{5}{8}$	
in p			30		l 🔥 pri	
Siebdurchgang in M%			- 7 25		20 % 80 Siebrückstand in M%	
50 -	10	_======================================			─ 80 🖄	
7 2					┨	
ი ე _ა ე		- τυ	- 7 "	0 8 4 6 4 6	. 	
0.063	0,125	0,25	4	3,6 11,2 16 22,4 31.5	4	
0	0		bweite in mm			
		Asphaltb	inder AC 16	BS		

Seite 12/34

Asphaltbinder AC 16 B S - Probe-Nr. 10

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch):

GGK aus Kies gebrochen und Granit (teilweise Bahnschotter), FGK gebrochen, Füller

Bindemittelgehalt:			Korngrö	ßenvert	eilung	Anteil	Durchgang
lösliche Menge	M%	4,55	Kornkl	asse in	mm	M%	M%
Zuschlag Unlösliches	M%	0,18	0,000	-	0,063	5,5	5,5
Gesamtmenge	M%	4,7	0,063	-	0,125	1,7	7,2
			0,125	-	0,25	2,9	10,1
Wassergehalt	M%	<0,1	0,25	-	1	8,9	19,0
			1	-	2	6,2	25,2
Bindemitteleigenschaften:			2	-	5	14,8	40,0
EP RuK	°C	66,2	5	-	8	14,2	54,2
elast. Rückstellung Ausziehlänge	% cm	63 -	8	-	11	12,0	66,2
			11	-	16	28,6	94,8
			16	-	22	5,2	100,0
Rohdichte	g/cm³	2,541	22	-	32		
			32	-	45		
Marshall-Probekörper (145 °C):							
Raumdichte	g/cm³	2,395	Faseranteil			M%	
Hohlraumgehalt	Vol%	5,7	Füller < 0,063	3 mm		M%	5,5
Stabilität	kN	-	Anteil < 0,125	5 mm		M%	7,2
Fließwert	mm	-	FGK 0,063/2	mm		M%	19,7
			GGK > 2 mm			M%	74,8
			Anteil > 5,6 m	nm		M%	-
abgelaufene Bindemittelmenge	M%	-	Grobkornant	eil		M%	33,8
100 —					100	 0	
100					100		
				80	7// ⁹⁰	00 -	
%: Siebdurchgang in M% 80 — — — — — — — — — — — — — — — — — — —						20 %	
₹					//	_ ∑	
60 <u></u>				//	T65	40 분	
				1//		Star -	
일 40 —			1//	+		<u> 60 පූ</u>	
pg: -			30			- bri	
.e. 20 ⊢		 	25			80 ig	
7							
03	$ \Diamond_5$					₁₀₀	
0,063	0,125	0,25	2	5,6 8	11,2 16 22,4 31.5		
0,0	0,1	6	bweite in mm	4,	± % %	•	
		A a a b a l 4 b	oinder AC 1	CDC			

Seite 13/34

Asphaltbinder AC 16 B S - Probe-Nr. 11

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

Bindemittelgehalt:			Korngrößenver	teilung	Anteil	Durchgang
lösliche Menge	M%	5,03	Kornklasse in	n mm	M%	M%
Zuschlag Unlösliches	M%	0,20	0,000 -	0,063	6,8	6,8
Gesamtmenge	M%	5,2	0,063 -	0,125	2,2	9,0
			0,125 -	0,25	3,3	12,3
Wassergehalt	M%	<0,1	0,25 -	1	10,9	23,2
			1 -	2	9,0	32,2
Bindemitteleigenschaften	:		2 -	5	21,3	53,5
EP RuK	°C	66,8	5 -	8	16,8	70,3
elast. Rückstellung Auszie	ehlänge % cm	67 -	8 -	11	7,8	78,1
			11 -	16	18,8	96,9
			16 -	22	3,1	100,0
Rohdichte	g/cm³	2,520	22 -	32		
		·	32 -	45		
Marshall-Probekörper (14	5 °C):					
Raumdichte	g/cm³	2,434	Faseranteil		M%	-
Hohlraumgehalt	Vol%	3,4	Füller < 0,063 mm		M%	6,8
Stabilität	kN	_	Anteil < 0,125 mm		M%	9,0
Fließwert	mm	-	FGK 0,063/2 mm		M%	25,4
			GGK > 2 mm		M%	67,8
			Anteil > 5,6 mm		M%	-
abgelaufene Bindemittelm	nenge M%	-	Grobkornanteil		M%	21,9
			•	100 _		
	100			100	0	
				90	_	
%-	80		1	80 // 00	— 20 ♀	
Σ				- i $+$ $+$ $+$ $+$	×	
ri g	60			<u>, 1965</u>	⊣ 40 등	
gan						
) chộ	40				60	
inp	70		30		l w	
Siebdurchgang in M%	20				20 % 80	
S	20				─ 80 <u>\\ \\</u>	
	7				\dashv	
	0 —	ν τ	- 2 9 8	0, 0, 4, 10	<u>니</u> 100	
	0,063	0,25	,	11,2 16 22,4 31,5	45	
	0 0	Sie	bweite in mm			
		Asphalth	oinder AC 16 B S			
<u> </u>						

Seite 14/34

Asphaltbinder AC 16 B S - Probe-Nr. 12

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Kies gebrochen und Granit (teilweise

Bindemittelgehalt:		4.00	_	nverteilung	Anteil	Durchgang
lösliche Menge	M%	4,96	-	se in mm	M%	M%
Zuschlag Unlösliches	M%	0,21	0,000	- 0,063	7,8	7,8
Gesamtmenge	M%	5,2	0,063	- 0,125	1,5	9,3
			0,125	- 0,25	3,1	12,4
Wassergehalt	M%	<0,1	0,25	- 1	9,8	22,2
			1	- 2	8,0	30,2
Bindemitteleigenschaften:			2	- 5	19,7	49,9
EP RuK	°C	69,2	5	- 8	19,3	69,2
elast. Rückstellung Ausziehlän	ge % cm	50 15,0	8	- 11	10,4	79,6
			11	- 16	12,1	91,7
			16	- 22	8,3	100,0
Rohdichte	g/cm³	2,534	22	- 32		
			32	- 45		
Marshall-Probekörper (145 °C)	:					
Raumdichte	g/cm³	2,431	Faseranteil		M%	-
Hohlraumgehalt	Vol%	4,1	Füller < 0,063 m	nm	M%	7,8
Stabilität	kN	-	Anteil < 0,125 m	nm	M%	9,3
Fließwert	mm	-	FGK 0,063/2 mr	n	M%	22,4
			GGK > 2 mm		M%	69,8
			Anteil > 5,6 mm	1	M%	-
abgelaufene Bindemittelmenge	• M%	-	Grobkornanteil		M%	20,4
			1	100	_	
100				100	0	
				90	_	
% 80				80 // 00	— 20 ♀	
W				$\sqrt{ j }$	Š	
.i. 60			<u>_</u>	65	⊣ 40 등	
yan						
ù 40			///		— 60 数	
Siebdurchgang in M%			30		20 40 60 80 80 80 80 80 80 80 80 80 80 80 80 80	
ie p			-025			
	10	_======			— 80 <u>დ</u>	
7		=-			\dashv	
0 ³ (<u> </u>		. 2 .		<u> </u>	
	0,125	0,25	rų	11,2 16 16 22,4 31,5	45	
G	0	Sie	bweite in mm			
		Asphaltb	inder AC 16	BS		

Seite 15/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 1D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

Bindemittelgehalt:			Korngrößenver	teilung	Anteil	Durchgang
lösliche Menge	M%	7,35	Kornklasse in	ı mm	M%	M%
Zuschlag Unlösliches	M%	0,21	0,000 -	0,063	7,9	7,9
Gesamtmenge	M%	7,6	0,063 -	0,125	1,6	9,5
			0,125 -	0,25	1,7	11,2
Wassergehalt	M%	<0,1	0,25 -	1	7,6	18,8
			1 -	2	5,7	24,5
Bindemitteleigenschafter	1:		2 -	5	19,7	44,2
EP RuK	°C	66,6	5 -	8	48,2	92,4
elast. Rückstellung Auszi	ehlänge % cm	74 -	8 -	11	7,6	100,0
		-	11 -	16		
			16 -	22		
Rohdichte	g/cm³	2,398	22 -	32		
		·	32 -	45		
Marshall-Probekörper (14	I5 °C):					
Raumdichte	g/cm³	2,335	Faseranteil	•	M%	0,30
Hohlraumgehalt	Vol%	2,6	Füller < 0,063 mm		M%	7,9
Stabilität	kN	-	Anteil < 0,125 mm		M%	-
Fließwert	mm	-	FGK 0,063/2 mm		M%	16,6
			GGK > 2 mm		M%	75,5
			Anteil > 5,6 mm		M%	-
abgelaufene Bindemitteln	nenge M%	-	Grobkornanteil		M%	55,8
	<u>'</u>	1	100_		-	•
	100		1 100	100	□ 0	
				90		
%-	80				20 🕺	
Ξ					<u> </u>	
Ë.	60		55 //		⊢ 40 ≒	
lan			55		anc	
chç	40				60 ckst	
dur	40		30		rüo	
Siebdurchgang in M%					20 %	
S	20 12	-1	20		80 N	
	18					
	0 5 10		- 2 9 8	0, (0, \$7, 10	└─ │ 100	
	0,063	0,25	, D	11,2 16 22,4	5. 5.	
	0 0	Sie	bweite in mm			
		Splittmasti	xasphalt SMA 8	S		
		•	•			

Seite 16/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 2D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

Bindemittelgehalt:			Korngrößenv	erteilung/	Anteil	Durchgang
lösliche Menge	M%	7,38	Kornklasse	e in mm	M%	M%
Zuschlag Unlösliches	M%	0,23	0,000 -	0,063	9,0	9,0
Gesamtmenge	M%	7,6	0,063 -	0,125	1,1	10,1
			0,125 -	0,25	1,8	11,9
Wassergehalt	M%	<0,1	0,25 -	1	6,7	18,6
			1 -	2	5,5	24,1
Bindemitteleigenschaften	:		2 -	5	20,4	44,5
EP RuK	°C	67,6	5 -	8	52,5	97,0
elast. Rückstellung Auszie	ehlänge % cm	76 -	8 -	11	3,0	100,0
			11 -	16		
			16 -	22		
Rohdichte	g/cm³	2,406	22 -	32		
			32 -	45		
Marshall-Probekörper (14	5 °C):					
Raumdichte	g/cm³	2,339	Faseranteil		M%	0,24
Hohlraumgehalt	Vol%	2,8	Füller < 0,063 mm	1	M%	9,0
Stabilität	kN	-	Anteil < 0,125 mm	1	M%	-
Fließwert	mm	-	FGK 0,063/2 mm		M%	15,1
			GGK > 2 mm		M%	75,9
			Anteil > 5,6 mm		M%	-
abgelaufene Bindemittelm	nenge M%	-	Grobkornanteil		M%	55,5
			10	0		
1	100			100	0	
				90		
%-	80		 		─ 20 嶈	
Siebdurchgang in M%			- 	4	20 %	
. <u>.</u> 	60		55,4		— 40 ^{:=}	
gan			7;	+	tan [
rch	40				<u> 60 왕</u>	
npo			30 35		Prü .	
) ieb	20					
0)	12		20		00 07	
	0 8				400	
	0 2 2	55 -	5,6	1,2 1,2 1,4 2,4	<u>.</u> 100	
	0,063	0,25		11,2 16 16 22,4 31,5) - 4	
			bweite in mm			
		Splittmasti	xasphalt SMA	8 S		

Seite 17/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 3D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

Bindemittelgehalt:			Korngrößenve	rteilung	Anteil	Durchgang
lösliche Menge	M%	7,31	Kornklasse ii	n mm	M%	M%
Zuschlag Unlösliches	M%	0,22	0,000 -	0,063	8,7	8,7
Gesamtmenge	M%	7,5	0,063 -	0,125	1,6	10,3
			0,125 -	0,25	1,9	12,2
Wassergehalt	M%	<0,1	0,25 -	1	6,3	18,5
			1 -	2	5,6	24,1
Bindemitteleigenschafter	n:		2 -	5	18,7	42,8
EP RuK	°C	67,8	5 -	8	51,5	94,3
elast. Rückstellung Ausz	iehlänge % cm	75 -	8 -	11	5,7	100,0
		-	11 -	16		
			16 -	22		
Rohdichte	g/cm³	2,411	22 -	32		
			32 -	45		
Marshall-Probekörper (14	45 °C):					
Raumdichte	g/cm³	2,365	Faseranteil		M%	0,25
Hohlraumgehalt	Vol%	1,9	Füller < 0,063 mm		M%	8,7
Stabilität	kN	-	Anteil < 0,125 mm		M%	-
Fließwert	mm	-	FGK 0,063/2 mm		M%	15,4
			GGK > 2 mm		M%	75,9
			Anteil > 5,6 mm		M%	-
abgelaufene Bindemitteli	menge M%	-	Grobkornanteil		M%	57,2
			100_			<u> </u>
	100			100	0	
				90		
%-	80		 		─ 20 ×	
Siebdurchgang in M%					20 %	
ü.	60		55,		─ 40 등	
Jan			39!		and	
chç	40		//!		60 gg	
dur	70		30		l o g	
ieb	00				os ek	
S	20 12		20		── 80 <u>.</u> 2	
	18					
	0 6 7	ر ا	- 7 9 8	0 0 0 4 n	100	
	0,063	0,25	J.	11,2 16 22,4	5. 54	
	0 0	Sie	bweite in mm			
		Splittmasti	xasphalt SMA 8	3 S		

Seite 18/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 4D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

Bindemittelgehalt:			Korngrößenver	teilung	Anteil	Durchgang
lösliche Menge	M%	7,35	Kornklasse in	mm	M%	M%
Zuschlag Unlösliches	M%	0,21	0,000 -	0,063	8,2	8,2
Gesamtmenge	M%	7,6	0,063 -	0,125	2,2	10,4
			0,125 -	0,25	2,1	12,5
Wassergehalt	M%	<0,1	0,25 -	1	5,5	18,0
			1 -	2	5,9	23,9
Bindemitteleigenschaften	:		2 -	5	20,7	44,6
EP RuK	°C	67,0	5 -	8	51,1	95,7
elast. Rückstellung Auszie	ehlänge % cm	75 -	8 -	11	4,3	100,0
			11 -	16		
			16 -	22		
Rohdichte	g/cm³	2,401	22 -	32		
			32 -	45		
Marshall-Probekörper (14	5 °C):					
Raumdichte	g/cm³	2,338	Faseranteil		M%	0,22
Hohlraumgehalt	Vol%	2,6	Füller < 0,063 mm		M%	8,2
Stabilität	kN	-	Anteil < 0,125 mm		M%	-
Fließwert	mm	-	FGK 0,063/2 mm		M%	15,7
			GGK > 2 mm		M%	76,1
			Anteil > 5,6 mm		M%	-
abgelaufene Bindemittelm	nenge M%	-	Grobkornanteil		M%	55,4
			100_			
•	100			100	0	
				0		
%	80		 		─ 20 😽	
Siebdurchgang in M%					20 %	
ji ji	60		55,4		— 40 ^년 წ	
gan			7;		tan	
rchi	40				<u> 60 왕</u>	
npo			30 35		Drü'	
Sieb	20				Sie 88	
0)	12		20		00 07	
	0 8				100	
	0 2 2	۲ ک	5,6	1,2 - 16 - 2,4 - 15	₹ 100	
	0,063	0,25		11,2 16 22,4 21,5	2 4	
	0 0		bweite in mm	_		
		Splittmasti	xasphalt SMA 8	S		

Seite 19/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 5D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

Bindemittelgehalt:			Korngrößenve	erteilung	Anteil	Durchgang
lösliche Menge	M%	7,32	Kornklasse	in mm	M%	M%
Zuschlag Unlösliches	M%	0,20	0,000 -	0,063	7,4	7,4
Gesamtmenge	M%	7,5	0,063 -	0,125	1,3	8,7
			0,125 -	0,25	2,5	11,2
Wassergehalt	M%	<0,1	0,25 -	1	7,1	18,3
			1 -	2	5,2	23,5
Bindemitteleigenschafter	1 :		2 -	5	18,1	41,6
EP RuK	°C	67,0	5 -	8	52,6	94,2
elast. Rückstellung Auszi	ehlänge % cm	76 -	8 -	11	5,8	100,0
			11 -	16		
			16 -	22		
Rohdichte	g/cm³	2,397	22 -	32		
		-	32 -	45		
Marshall-Probekörper (14	5 °C):					
Raumdichte	g/cm³	2,334	Faseranteil		M%	0,15
Hohlraumgehalt	Vol%	2,6	Füller < 0,063 mm		M%	7,4
Stabilität	kN	_	Anteil < 0,125 mm		M%	<u>-</u>
Fließwert	mm	-	FGK 0,063/2 mm		M%	16,1
			GGK > 2 mm		M%	76,5
			Anteil > 5,6 mm		M%	-
abgelaufene Bindemitteln	nenge M%	-	Grobkornanteil		M%	58,4
			100			
	100		100	100	0	
				90		
%-	80		- 	1	─ 20 %	
Siebdurchgang in M%			<u> </u>		20 %	
n i g	60		55.//		— 40 등	
jan			300		auc	
chç	40		/ /		60 ckst	
dur	40		30		Jul Sin	
ieb					je b	
S	20		20		— 80 <u>∞</u>	
	\ <u></u>					
	0 6 10	2 2	- 7 9	2 01 (0 42 10	<u> </u>	
	0,063	0,25	5	22,4 31.5	45	
	0 0	Sie	bweite in mm			
		Splittmasti	xasphalt SMA	8 S		
		-	-			

Seite 20/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 6D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

Bindemittelgehalt:			Korngrößenver	teilung	Anteil	Durchgang
lösliche Menge	M%	7,51	Kornklasse in	mm	M%	M%
Zuschlag Unlösliches	M%	0,22	0,000 -	0,063	8,5	8,5
Gesamtmenge	M%	7,7	0,063 -	0,125	1,3	9,8
			0,125 -	0,25	2,0	11,8
Wassergehalt	M%	<0,1	0,25 -	1	7,2	19,0
			1 -	2	5,6	24,6
Bindemitteleigenschaften	:		2 -	5	19,8	44,4
EP RuK	°C	65,2	5 -	8	51,1	95,5
elast. Rückstellung Auszie	ehlänge % cm	74 -	8 -	11	4,5	100,0
		-	11 -	16		
			16 -	22		
Rohdichte	g/cm³	2,389	22 -	32		
			32 -	45		
Marshall-Probekörper (14	5 °C):					
Raumdichte	g/cm³	2,338	Faseranteil		M%	0,21
Hohlraumgehalt	Vol%	2,1	Füller < 0,063 mm		M%	8,5
Stabilität	kN	-	Anteil < 0,125 mm		M%	-
Fließwert	mm	-	FGK 0,063/2 mm		M%	16,1
			GGK > 2 mm		M%	75,4
			Anteil > 5,6 mm		M%	<u>-</u>
abgelaufene Bindemitteln	nenge M%	-	Grobkornanteil		M%	55,6
		1	100_			
•	100			100	0	
				0	_	
%-	80				─ 20 %	
Σ			<u> </u>		_ <u> </u>	
g	60		55.		— 40 ≒	
Jan			3391		anc	
chg	40					
dur	70		30 735		l o oïr	
Siebdurchgang in M%	20					
S	20 12	-			─ 80 <u>\\ \\</u>	
	\(\frac{\x}{8}\)				\dashv	
	0 5 7	رن در ا	- 2 8	2 6 4 7	<u>၂</u> 100	
	0,063	0,25	Ŋ	11,2 16 22,4 31,5	45	
	0 0	Sie	bweite in mm			
		Splittmasti	xasphalt SMA 8	S		
		-				

Seite 21/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 7D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

Bindemittelgehalt:			Korngrößenverteilung	Anteil	Durchgang
lösliche Menge	M%	7,66	Kornklasse in mm	M%	M%
Zuschlag Unlösliches	M%	0,22	0,000 - 0,063	8,4	8,4
Gesamtmenge	M%	7,9	0,063 - 0,125	1,7	10,1
			0,125 - 0,25	2,1	12,2
Wassergehalt	M%	<0,1	0,25 - 1	7,0	19,2
			1 - 2	5,9	25,1
Bindemitteleigenschaften	n:		2 - 5	17,5	42,6
EP RuK	°C	65,2	5 - 8	54,4	97,0
elast. Rückstellung Auszie	ehlänge % cm	73 -	8 - 11	3,0	100,0
			11 - 16		
			16 - 22		
Rohdichte	g/cm³	2,401	22 - 32		
			32 - 45		
Marshall-Probekörper (14	5 °C):				
Raumdichte	g/cm³	2,337	Faseranteil	M%	0,21
Hohlraumgehalt	Vol%	2,7	Füller < 0,063 mm	M%	8,4
Stabilität	kN	-	Anteil < 0,125 mm	M%	-
Fließwert	mm	-	FGK 0,063/2 mm	M%	16,7
			GGK > 2 mm	M%	74,9
			Anteil > 5,6 mm	M%	-
abgelaufene Bindemitteln	nenge M%	-	Grobkornanteil	M%	57,4
	400		100		
•	100		100	0	
			90		
Siebdurchgang in M%	80			20 ×	
Σ				20 %	
ig i.	60		55 1	40 ^년	
gar				tan —	
rch	40			<u> </u>	
npc			30 35	brü	
Siet	20			80 Sie	
0,	12				
	0 8			100	
	0 23 23		2 5,6 1,2 1,2 1,4 1,5		
	0,063	0,25	- 2	31,5 45	
			bweite in mm		
		Splittmasti	xasphalt SMA 8S		

Seite 22/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 8D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

Bindemittelgehalt:			Korngrößenverteilun	g Anteil	Durchgang
lösliche Menge	M%	7,63	Kornklasse in mm	M%	M%
Zuschlag Unlösliches	M%	0,23	0,000 - 0	,063 9,2	9,2
Gesamtmenge	M%	7,9	0,063 - 0	,125 1,0	10,2
			0,125 - 0	,25 1,6	11,8
Wassergehalt	M%	<0,1	0,25 - 1	5,8	17,6
			1 - 2	5,9	23,5
Bindemitteleigenschafter	1:		2 - 5	30,7	54,2
EP RuK	°C	67,2	5 - 8	42,7	96,9
elast. Rückstellung Auszi	ehlänge % cm	73 -	8 - 11	3,1	100,0
			11 - 16		
			16 - 22		
Rohdichte	g/cm³	2,393	22 - 32		
			32 - 45		
Marshall-Probekörper (14	I5 °C):				
Raumdichte	g/cm³	2,310	Faseranteil	M%	0,19
Hohlraumgehalt	Vol%	3,5	Füller < 0,063 mm	M%	9,2
Stabilität	kN	-	Anteil < 0,125 mm	M%	-
Fließwert	mm	-	FGK 0,063/2 mm	M%	14,3
			GGK > 2 mm	M%	76,5
			Anteil > 5,6 mm	M%	-
abgelaufene Bindemittelr	menge M%	-	Grobkornanteil	M%	45,8
		<u>.</u>	100_		
	100		100	0	
			90		
%-	80		 	20 %	
Siebdurchgang in M%				20 %	
g in	60		55, 1	1 40 ≒	
yan			~	anc	
ŷų .	40			60 85	
dur	TO		30 // 35		
ieb	20		//	oiek	
S	20 12		20	80 🖄	
	18				
	0 5 70	ر د	- 7 987	100	
	0,063	0,25	7, 7,	16 22,4 31,5 45	
	0	Sie	bweite in mm		
		Splittmasti	xasphalt SMA 8 S		

Seite 23/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 9D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

M%						Durchgang
IVI /0	7,58	Kornkla	asse in r	nm	M%	M%
M%	0,22	0,000	-	0,063	8,8	8,8
M%	7,8	0,063	-	0,125	1,2	10,0
		0,125	-	0,25	1,8	11,8
M%	<0,1	0,25	-	1	5,6	17,4
		1	-	2	5,5	22,9
		2	-	5	30,6	53,5
°C	65,0	5	-	8	44,2	97,7
änge % cm	59 -	8	-	11	2,3	100,0
		11	-	16		
		16	-	22		
g/cm³	2,392	22	-	32		
		32	-	45		
C):						
g/cm³	2,301	Faseranteil			M%	0,21
Vol%	3,8	Füller < 0,063	mm		M%	8,8
kN	-	Anteil < 0,125	mm		M%	-
mm	-	FGK 0,063/2 r	mm		M%	14,1
		GGK > 2 mm			M%	77,1
		Anteil > 5,6 m	nm		M%	-
ige M%	-	Grobkornante	eil		M%	46,5
			100		_	
				100	□ 0	
			90			
)			 // 		20 🕺	
			 ! 		<u> </u>	
)		5	5 / /		⊢ 40 ≒	
			7!		tanı	
,					60 8	
		30	/ ₃₅			
		//			Sie de la company de la compan	
12		20			00 07	
8						
ري اک ک	۲ ک	- 2	9 8 9	7 9 4 4	100 n	
),06	0,2		ις,	, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	. 4	
5 0						
	Splittmasti	xasphalt Sl	MA 8	S		
	M% M% CE Grange % cm g/cm³ Vol% kN mm Rige M%	M% 7,8 M% <0,1 °C 65,0 59 - g/cm³ 2,392 C): g/cm³ 2,301 Vol% 3,8 kN - mm - ge M% -	M%	M% 7,8 0,063 - 0,125 - 0,125 - 0,25 - 1 - 1 - 2 - 11 - 16 - 22 - 11 - 16 - 22 - 32 - 32 - 11 - 16 - 22 - 32 - 32 - 11 - 16 - 22 - 32 - 11 - 16 - 22 - 32 - 11 - 16 - 22 - 32 - 11 - 16 - 22 - 32 - 11 - 16 - 16 - 16 - 16 - 16 - 16 - 1	M% 7,8 0,063 - 0,125 0,125 - 0,25 0,125 - 0,25 0,125 - 1 1 1 - 2 2 2 - 5 5 5 - 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	M% 7,8

Seite 24/34

Splittmastixasphalt SMA 8 S - Probe-Nr. 10D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: fett glänzend

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch): GGK aus Granit, Kies gebrochen, FGK gebrochen,

Bindemittelgehalt:			Korngrößenvertei	ilung	Anteil	Durchgang
lösliche Menge	M%	7,28	Kornklasse in m	ım	M%	M%
Zuschlag Unlösliches	M%	0,22	0,000 -	0,063	8,9	8,9
Gesamtmenge	M%	7,5	0,063 -	0,125	0,9	9,8
			0,125 -	0,25	1,3	11,1
Wassergehalt	M%	<0,1	0,25 -	1	5,2	16,3
			1 -	2	6,2	22,5
Bindemitteleigenschaften	1:		2 -	5	31,5	54,0
EP RuK	°C	66,2	5 -	8	41,9	95,9
elast. Rückstellung Auszi	ehlänge % cm	55 17,5	8 -	11	4,1	100,0
			11 -	16		
			16 -	22		
Rohdichte	g/cm³	2,380	22 -	32		
			32 -	45		
Marshall-Probekörper (14	5 °C):					
Raumdichte	g/cm³	2,302	Faseranteil		M%	0,19
Hohlraumgehalt	Vol%	3,3	Füller < 0,063 mm		M%	8,9
Stabilität	kN	-	Anteil < 0,125 mm		M%	-
Fließwert	mm	-	FGK 0,063/2 mm		M%	13,6
			GGK > 2 mm		M%	77,5
			Anteil > 5,6 mm		M%	-
abgelaufene Bindemitteln	nenge M%	-	Grobkornanteil		M%	46,0
	100		100		0	
	100			100	□ 0	
			90			
%-:	80		 		─ 20 ×	
≥			 		⊢ ∑	
ii gr	60		55		─ 40 등	
gar						
rch	40		//i		─ 60 წ	
npq			30 35		prü	
Siebdurchgang in M%	20				90	
	12		20			
	0					
	63	0,25	2 5,6	16 22,4 31,5	154 100	
	0,063	o cia	pweite in mm	3 2 .	•	
		Spiittmasti	xasphalt SMA 8 S			

Seite 25/34

Asphaltbeton AC 11 D S - Probe-Nr. 11D

Mischgut - Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

Äußere Beschaffenheit: gut umhüllt

Bindemittelart (sensorisch): Bitumen (PmB)

Art der Gesteinskörnungen (sensorisch):

GGK aus Kies gebrochen und Granit (Bahnschotter), FGK gebrochen und rund, Füller

Bindemittelgehalt:			Korngrö	Senverteilun	g	Anteil	Durchgang
lösliche Menge	M%	6,42	Kornkl	asse in mm		M%	M%
Zuschlag Unlösliches	M%	0,22	0,000	- 0	,063	8,3	8,3
Gesamtmenge	M%	6,6	0,063	- 0	,125	1,8	10,1
			0,125	- 0	,25	5,5	15,6
Wassergehalt	M%	<0,1	0,25	- 1	'	19,2	34,8
			1	- 2		13,6	48,4
Bindemitteleigenschaften:			2	- 5		26,2	74,6
EP RuK	°C	67,4	5	- 8		9,9	84,5
elast. Rückstellung Ausziehlänge	• % cm	67 -	8	- 11		14,5	99,0
			11	- 16		1,0	100,0
			16	- 22			
Rohdichte	g/cm³	2,455	22	- 32			
			32	- 45			
Marshall-Probekörper (145 °C):							
Raumdichte	g/cm³	2,418	Faseranteil			M%	-
Hohlraumgehalt	Vol%	1,5	Füller < 0,063	mm		M%	8,3
Stabilität	kN	-	Anteil < 0,125	i mm		M%	10,1
Fließwert	mm	-	FGK 0,063/2 i	mm		M%	40,1
			GGK > 2 mm			M%	51,6
			Anteil > 5,6 m	nm		M%	-
abgelaufene Bindemittelmenge	M%	-	Grobkornante	eil		M%	15,5
400 —				100		0	
100					100	0	
				85 , 90			
×. 80 ⊢				///		20 %	
≥				70		Σ	
. <u>=</u> 60 –				1		40 늘	
gar –			50			itan	
			40			60 <u>왕</u>	
Siebdurchgang in M%			70			50 40 60 80 Siebrückstand in M%	
- is 20	17 -	/ //				80 Se	
مِيْ حُرِّم	97					00	
83	25	0,25	. 2	5,6 11,2		UU	
0,063	0,125	o Sink	oweite in mm	, ±	31		
				0.44.0.0			
		Asphaltdeck	(SCHICHT A	C 11 D S			

Seite 26/34

Asphaltbeton AC 11 D S - Probe-Nr. 12D

Mischgut – Untersuchungsergebnisse

Verfahren: TP Asphalt-StB, Teil 0, 1, 2, 3 - Tetrachlorethen, 5, 6 - Verfahren B/D, 8, 14, 18, 28 / ZTV BEA-StB, 29, 30, 34 DIN EN 1427, DIN EN 13398

gut umhüllt Äußere Beschaffenheit:

Bitumen (PmB) Bindemittelart (sensorisch):

GGK aus Kies gebrochen und Granit (Bahnschot-Art der Gesteinskörnungen (sensorisch):

ter), FGK gebrochen und rund, Füller

Bindemittelgehalt:			Korngrößen	_	Anteil	Durchgang
lösliche Menge	M%	6,10	Kornklasse	e in mm	M%	M%
Zuschlag Unlösliches	M%	0,21	0,000 -	0,063	8,2	8,2
Gesamtmenge	M%	6,3	0,063 -	0,125	1,6	9,8
			0,125 -	0,25	5,3	15,1
Wassergehalt	M%	<0,1	0,25 -	1	18,8	33,9
			1 -	2	10,7	44,6
Bindemitteleigenschaften:			2 -	5	22,3	66,9
EP RuK	°C	61,0	5 -	8	11,6	78,5
elast. Rückstellung Ausziehlär	ige % cm	46 -	8 -	11	20,0	98,5
			11 -	16	1,5	100,0
			16 -	22		
Rohdichte	g/cm³	2,455	22 -	32		
			32 -	45		
Marshall-Probekörper (145 °C)):					
Raumdichte	g/cm³	2,419	Faseranteil		M%	-
Hohlraumgehalt	Vol%	1,5	Füller < 0,063 mm	า	M%	8,2
Stabilität	kN	-	Anteil < 0,125 mn	n	M%	9,8
Fließwert	mm	-	FGK 0,063/2 mm		M%	36,4
			GGK > 2 mm		M%	55,4
			Anteil > 5,6 mm		M%	-
abgelaufene Bindemittelmeng	e M%	-	Grobkornanteil		M%	21,5
400				100	^	
100				100	0	
			85	90		
≈ 80					─ 20 😽	
Σ				70	<u> </u>	
.ii 60					─ 40 ^{.듵} 5	
gan			50		tan	
ਹੁੰ 40					<u> 60 왕</u>	
npo			40		Drü S	
%- Siebdurchgang in M% 70 70 70	47					
O 20					00 0	
90 _50	507					
0 ,	ა <u>ი</u>	رن د	- 2 -	8 2 9 4 4		
	0,063 0,125	0,25	5,6	8 11,2 16 22,4 22,4	. 4	
•	0		bweite in mm			
		Asphaltdec	kschicht AC 1	1 D S		

Seite 27/34

Bohrkern – Untersuchungsergebnisse

Verdichtungsgrad und Hohlraumgehalt

Verfahren: TP Asphalt-StB, Teil 0, 5, 6 - Verfahren B/D 8, 28, 29

Die Mischgutproben und die Ausbauproben sind laut Entnahmeprotokoll als zugehörig zu betrachten.

Bohrkern-Nr.	Raumdichte Ausbauprobe Marshall-Probekörper		Rohdichte	Hohlraumgehalt	Verdichtungsgrad		
	g/cm ³	g/cm ³	g/cm³	Vol%	%		
Binderschicht	Binderschicht AC 16 B S						
1 a 1 b	2,460	2,443	2,526	2,6	100,7		
2 a 2 b	2,472	2,435	2,504	1,3	101,5		
3 a 3 b	2,460	2,421	2,523	2,5	101,6		
4 a 4 b	2,465	2,421	2,538	2,9	101,8		
5 a 5 b	2,502	2,432	2,534	1,3	102,9		
6 a 6 b	2,480	2,432	2,539	2,3	102,0		
7 a 7 b	2,498	2,429	2,544	1,8	102,8		
8 a 8 b	2,460	2,399	2,524	2,5	102,5		
9 a 9 b	2,505	2,438	2,540	1,4	102,7		
10 a 10 b	2,460	2,395	2,544	3,3	102,7		
11 a 11 b	2,471	2,434	2,537	2,6	101,5		
12 a 12 b	2,479	2,431	2,542	2,5	102,0		

Seite 28/34

Bohrkern-Nr.		ndichte	Rohdichte	Hohlraumgehalt	Verdichtungsgrad	
	Ausbauprobe g/cm ³	Marshall-Probekörper g/cm³	g/cm³	Vol%	%	
Deckschicht SMA 8 S						
1 a 1 b	2,350	2,335	2,390	1,7	100,6	
2 a 2 b	2,319	2,339	2,416	4,0	99,1	
3 a 3 b	2,370	2,365	2,409	1,6	100,2	
4 a 4 b	2,329	2,338	2,399	2,9	99,6	
5 a 5 b	2,327	2,334	2,407	3,3	99,7	
6 a 6 b	2,311	2,338	2,404	3,9	98,8	
7 a 7 b	2,343	2,337	2,408	2,7	100,3	
8 a 8 b	2,346	2,310	2,397	2,1	101,6	
9 a 9 b	2,345	2,301	2,399	2,3	101,9	
10 a 10 b	2,315	2,302	2,395	3,3	100,6	
Deckschicht A	Deckschicht AC 11 D S					
11 a 11 b	2,386	2,418	2,464	3,2	98,7	
12 a 12 b	2,402	2,419	2,453	2,1	99,3	

Seite 29/34

Schichtenverbund

Verfahren: TP Asphalt-StB, Teil 48 A

Bohrkern-	Schichtgrenze	Einze	elwerte	arithmetis	sches Mittel
Nr.		Scherweg, mm	max. Scherkraft, kN	Scherweg, mm	max. Scherkraft, kN
1 c 1 d		2,1 2,0	36,1 41,4	2,1	38,8
2 c 2 d		2,3 2,1	30,1 29,1	2,2	29,6
3 c 3 d		2,1 2,3	34,9 34,5	2,2	34,7
4 c 4 d	AC B - Unterlage	2,7 2,4	42,6 37,8	2,6	40,2
5 c 5 d		2,0 2,1	45,9 46,0	2,1	46,0
6 c 6 d		1,9 2,3	32,5 33,7	2,1	33,1
7 c 7 d		0,8 1,0	11,7 13,5	0,9	12,6
8 c 8 d		2,5 2,3	34,5 35,8	2,4	35,2
9 c 9 d		2,8 2,6	41,1 40,0	2,7	40,6
10 c 10 d		1,7 2,3	22,5 26,0	2,0	24,3

Seite 30/34

Bohrkern-	Schichtgrenze	Einze	elwerte	arithmetis	sches Mittel
Nr.		Scherweg, mm	max. Scherkraft, kN	Scherweg, mm	max. Scherkraft, kN
1 c 1 d		4,2 3,8	34,3 32,2	4,0	33,3
2 c 2 d		3,4 3,4	40,4 40,0	3,4	40,2
3 c 3 d		4,2 4,0	33,0 31,3	4,1	32,2
4 c 4 d		4,0 3,4	33,2 34,8	3,7	34,0
5 c 5 d	CNAA AC D	3,8 4,3	30,3 29,0	4,1	29,7
6 c 6 d	SMA – AC B	3,5 4,0	32,9 44,1	3,8	38,5
7 c 7 d		3,6 4,0	29,4 37,6	3,8	33,5
8 c 8 d		4,4 5,0	32,9 31,1	4,7	32,0
9 c 9 d		4,3 4,2	33,2 36,6	4,3	34,9
10 c 10 d		3,5 3,8	37,7 37,3	3,7	37,5

Seite 31/34

Schichtdickenmessung

Verfahren: TP D-StB

Bohrkern-Nr.	Schichtdicke, cm					
	Deckschicht	Binderschicht	gesamt			
1 a	3,8	8,4	12,2			
1 b	3,7	8,6	12,3			
2 a	3,3	9,7	13,0			
2 b	3,2	9,5	12,7			
3 a	4,2	8,5	12,7			
3 b	4,2	8,5	12,7			
4 a	3,3	7,7	11,0			
4 b	3,4	7,7	11,1			
5 a	3,5	8,7	12,2			
5 b	3,7	8,6	12,3			
6 a	3,4	8,8	12,2			
6 b	3,5	8,7	12,2			
7 a	2,7	8,4	11,1			
7 b	2,8	8,3	11,1			
8 a	3,5	8,5	12,0			
8 b	3,5	8,2	11,7			
9 a	2,9	9,3	12,2			
9 b	2,9	9,0	11,9			
10 a	3,7	8,6	12,3			
10 b	3,6	8,6	12,2			
11 a	4,5	8,7	13,2			
11 b	4,5	8,7	13,2			
12 a	5,1	7,8	12,9			
12 b	5,1	7,9	13,0			

Bei Anlieferung lag zwischen den einzelnen Asphaltschichten Schichtenverbund vor. Für die Abnahme und Abrechnung sind bei Doppel-Bohrkernen die Mittelwerte je Entnahmestelle maßgebend.

Die Schichtdicke der Deckschichtbohrkerne 7 a,b und 9 a,b liegen unter der Anforderung nach Tabelle 13 der ZTV Asphalt-StB von mindestens 3,5 cm.

Seite 32/34

Bewertung

Die zulässigen Toleranzen der maßgebenden Vertragsbedingungen wie ZTV Asphalt-StB sowie die jeweiligen Länderregelungen wurden berücksichtigt. In der Spalte Bewertung bedeutet das Zeichen "+", dass die Soll- bzw. Grenzwerte erfüllt werden. Das Zeichen "–" bedeutet, dass die Soll- bzw. Grenzwerte auch unter Anrechnung der zulässigen Toleranzen nicht eingehalten werden.

AC 16 B S

	Ist	Soll- / Grenzwerte	zulässige Toleranz	Bewertung
Bindemittelgehalt M%	4,7 – 5,5	4,9	±0,4	+/-1)
Füller < 0,063 mm M%	5,5-7,8	6,1	±3,0	+
Anteil < 0,125 mm M%	7,2 - 9,3	7,7	±3,0	+
FGK 0,063/2 mm M%	19,7 – 25,4	22,6	±8,0	+
GGK > 2 mm M%	67,8 - 74,8	71,3	±8,0	+
Grobkornanteil M%	20,4 - 33,8	27,4	±9,0	+
Marshall-Hohlraumgehalt Vol%	2,4-5,7	3,5 – 6,5	±2,0	+
EP RuK °C	65,6-69,2	61,3	+8	+
elast. Rückstellung %	50 – 68	≥40	_	+
Verdichtungsgrad %	100,7 - 102,9	≥98,0	_	+
Bohrkern-Hohlraumgehalt Vol%	1,3 - 3,3	2,5 – 8,5	_	+/-2)
Schichtenverbund kN	12,6 – 46,0	≥12,0	_	+

¹⁾ Die Probe Nr. 1 erfüllt die Anforderung nicht. Nach den TP Asphalt-StB, Teil 1 musste an einer zweiten Messprobe der Bindemittelgehalt bestimmt werden, da der Prüfwert der Einzelbestimmung um mehr als die zulässige Toleranz vom Sollwert abweicht.

²⁾ Die Bohrkerne 2 a,b, 5 a,b, 6 a,b, 7 a,b und 9 a,b erfüllen die Anforderung nicht. Da der berechnete Hohlraumgehalt die Anforderung nicht erfüllt, musste nach den TP Asphalt-StB, Teil 5 jeweils an einer zweiten Messprobe die Rohdichte bestimmt werden. Der angegebene Wert ist als arithmetischer Mittelwert zu verstehen.

Seite 33/34

SMA8S

	lst	Soll- / Grenzwerte	zulässige Toleranz	Bewertung
Bindemittelgehalt M%	7,5 – 7,9	7,5	±0,4	+
Füller < 0,063 mm M%	7,4 – 9,2	9,3	±3,0	+
FGK 0,063/2 mm M%	13,6 – 16,7	14,8	±8,0	+
GGK > 2 mm M%	74,9 – 77,5	75,9	±8,0	+
Grobkornanteil M%	45,8 – 58,4	53,8	±8,0	+
Marshall-Hohlraumgehalt Vol%	1,9 – 3,8	2,5-3,0	±1,0	+
EP RuK °C	65,0 - 67,8	≤71	_	+
elast. Rückstellung %	55 – 76	≥40	_	+
Verdichtungsgrad %	98,8 – 101,9	≥98,0	_	+
Bohrkern-Hohlraumgehalt Vol%	1,6 – 4,0	1,5 – 5,0	_	+
Schichtenverbund kN	29,7 – 40,2	≥15,0	_	+

Seite 34/34

AC 11 D S

	lst	Soll- / Grenzwerte	zulässige Toleranz	Bewertung
Bindemittelgehalt M%	6,6 / 6,3	6,3	±0,4	+
Füller < 0,063 mm M%	8,3 / 8,2	8,9	±3,0	+
Anteil < 0,125 mm M%	10,1 / 9,8	12,3	±3,0	+
FGK 0,063/2 mm M%	40,1 / 36,4	35,6	±8,0	+
GGK > 2 mm M%	51,6 / 55,4	55,5	±8,0	+
Grobkornanteil M%	15,5 / 21,5	18,3	±5,0	+
Marshall-Hohlraumgehalt Vol%	1,5 / 1,5	2,5 - 3,5	±1,0	+
EP RuK °C	67,4 / 61,0	63,5	+8	+/*)
elast. Rückstellung %	67 / 46	≥40	_	+
Verdichtungsgrad %	98,7 / 99,3	≥98,0	_	+
Bohrkern-Hohlraumgehalt Vol%	3,2 / 2,1	1,5 – 5,5		+

^{*)} Der vorgefundene Erweichungspunkt RuK am zurückgewonnenen Bindemittel der Probe Nr. 12D liegt unter dem angegebenen Wert in der Erstprüfung.

INSTITUT FÜR MATERIALPRÜFUNG DR. SCHELLENBERG LEIPHEIM

GmbH & Co. KG

Dipl.-Ing. (FH) Schimetschek (Prüfstellenleiter)

Schinetrehal

B.Eng. Wenzel

Helena Wenzel